Step of Proof: adjacent-append
11,40
postcript
pdf
Inference at
*
1
1
2
1
1
1
I
of proof for Lemma
adjacent-append
:
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
L1
:
T
List
5.
L2
:
T
List
6.
i
: {0..(||
L1
@
L2
|| - 1)
}
7.
x
=
L1
[
i
]
8.
y
=
L2
[((
i
+1) - ||
L1
||)]
9.
i
< ||
L1
||
10.
(
i
< (||
L1
|| - 1))
x
= last(
L1
)
latex
by ((HypSubst (-4) 0)
CollapseTHENA (((Auto
)
CollapseTHEN (((DVar `L1')
CollapseTHEN (((
C
All Reduce)
CollapseTHEN (Auto
))
))
))
))
latex
C
1
:
C1:
L1
[
i
] = last(
L1
)
C
.
Definitions
last(
L
)
,
x
:
A
.
B
(
x
)
,
null(
as
)
,
True
,
-
n
,
b
,
{
x
:
A
|
B
(
x
)}
,
,
i
j
<
k
,
A
B
,
P
&
Q
,
Void
,
P
Q
,
x
:
A
B
(
x
)
,
n
-
m
,
n
+
m
,
||
as
||
,
#$n
,
,
l
[
i
]
,
[
car
/
cdr
]
,
A
,
a
<
b
,
{
i
..
j
}
,
type
List
,
Type
,
False
,
t
T
,
s
=
t
Lemmas
last
wf
,
assert
wf
,
true
wf
,
not
wf
,
false
wf
origin